

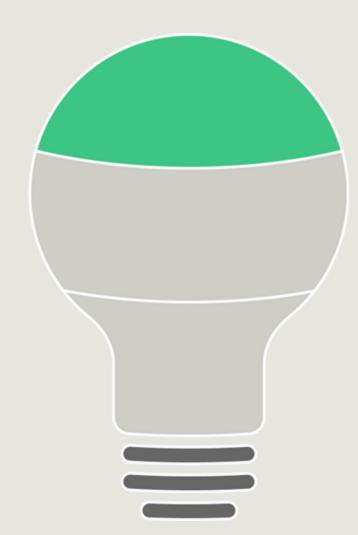
A Comparative Analysis of Monolith vs Microservices Energy Consumption

Dr. Roberta Capuano, **Eoan O'Dea**, Prof. Henry Muccini

SWEN / Software Engineering Research Group - FrAmeLab

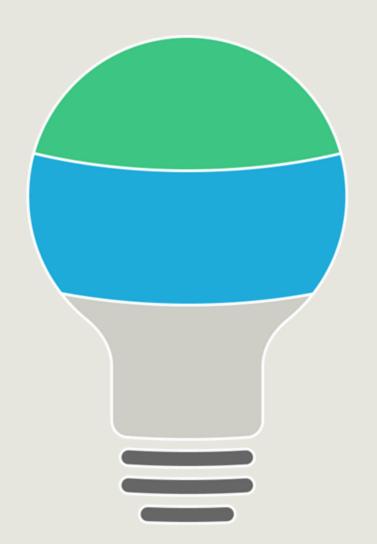
Università degli Studi dell'Aquila, Italy

eoan.odea@graduate.univaq.it


Software, at what cost?

https://www.channelnewsasia.com/today/big-read/generative-ai-environmental-impact-energy-water-5042011

Greenhouse Gas Emissions


ICT estimated 1.8% to 3.9% of global greenhouse gas [1]

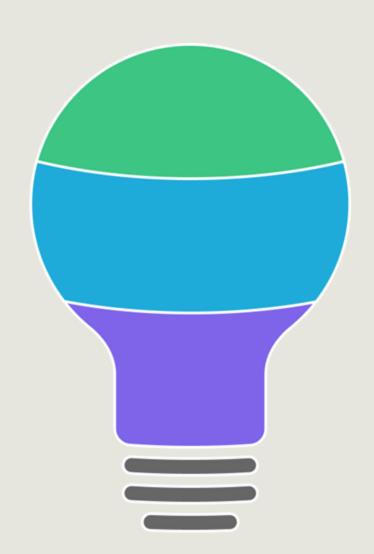
Greenhouse Emissions **Gas Emissions**

ICT estimated 1.8% to 3.9% of global greenhouse gas [1]

EU Regulations

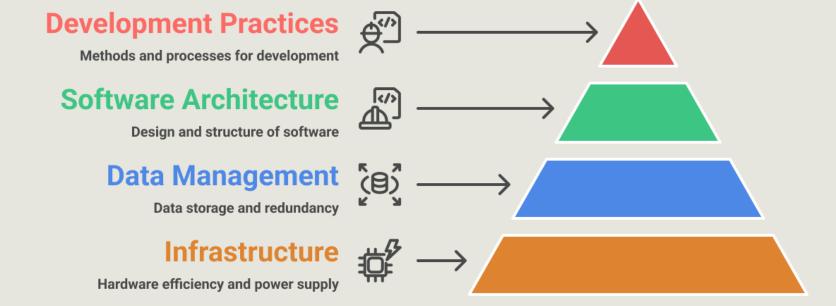
The European Union's regulations on Corporate Sustainability Reporting [2]

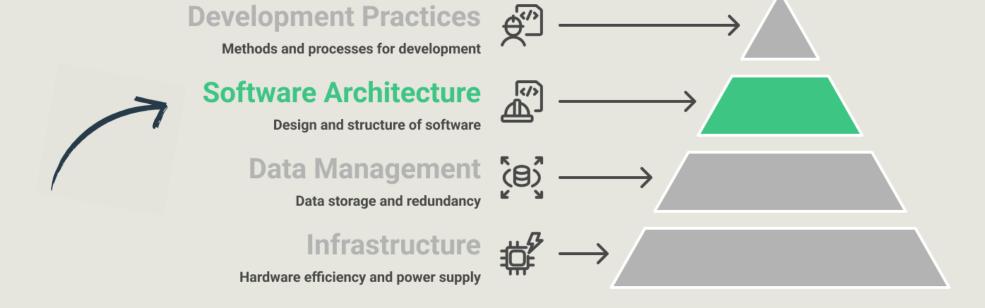
Greenhouse Gas Emissions



ICT estimated 1.8% to 3.9% of global greenhouse gas [1]

Microservices Architecture Market Value


In 2023, the global microservices architecture was valued at 3.7 billion USD [3]



EU Regulations

The European Union's regulations on Corporate Sustainability Reporting [2]

Why Microservices?

- Migration trend: lots of work on how to migrate, but limited evidence on energy implications.
- Bidirectional relevance: migration both to [4,5] and from [6,7] microservices is common.
- Industrial adoption: 74% of organizations already use microservices, 23% plan to adopt [8].

Goals

- Compare monolithic vs microservice architectures
- Measure energy consumption under different workloads
- Provide evidence to guide sustainable architectural decisions

RQ: How does microservice architecture compare to monolithic architecture in terms of energy consumption?

The Approach: Cohort Protocol

- Independent Variable: architectural development model (monolith, microservices)
- Dependent Variable: energy consumption
- Confounding Variable: Other factors that may affect energy use (e.g., background processes, hardware fluctuations, network latency)

The Approach: Selection Criteria

Focus on Java

Narrowing down to Open Source Javabased projects

Sustainability Ignored

Removing sustainability as a factor

Functional Equivalence

Monolith and Microservice versions of the application available

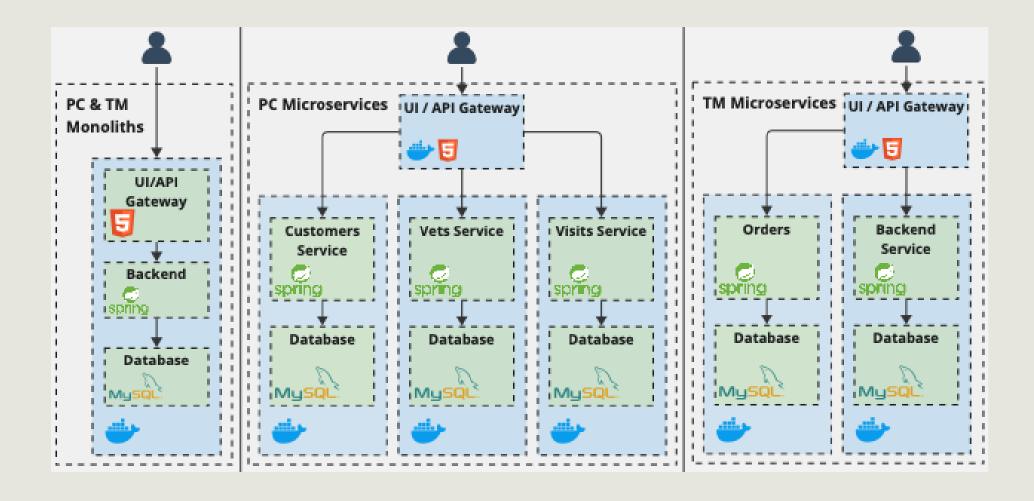
The Approach: The Cohorts and their Selection



Cohort 1
Monolithic version of the applications

Cohort 2
Microservice version of the applications

The Approach: The Cohorts and their Selection


Case Studies

- 1. PetClinic
- 2. TicketMonster

Cohort 1
Monolithic version of the applications

Cohort 2
Microservice version of the applications

Application Architectures

The Approach: Workloads

	Light (UC1)	Medium (UC2)	Heavy (UC3)
PC Frontend	Add owner + pet, search	Add multiple pets, update info	Create vet + appointments
TM Frontend	Browse events, buy 25 tickets (1 event)	Buy tickets (3 events)	Create venue, category, performance, event
Both Backend	10 GET requests	5 POST, DELETE requests	5 GET, POST, PUT, DELETE requests

With 50 parallel instances simulating user activity

The Experimental Setup

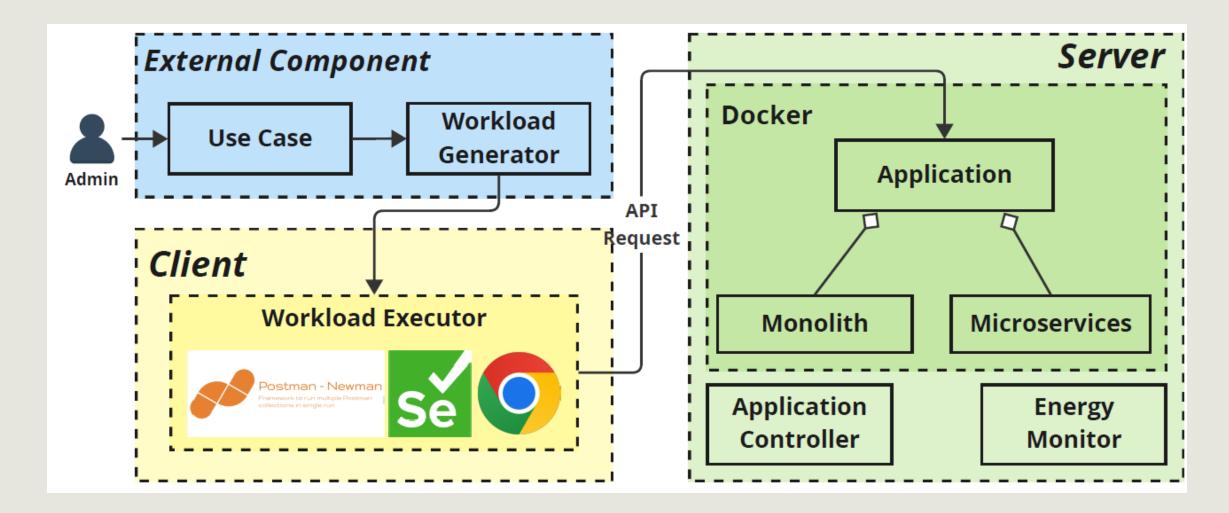


Table 6: Energy Comparison: Monolith vs Microservices Architectures

Application	Architecture	Use Case	Use Case	Overall	Mono. and
		ID	Avg.	Avg.	Micro. Avg.
TicketMonster	Monolith	UC1	108.82 J	183.14 J	170.15 J
		UC2	151.52 J		
		UC3	289.08 J		
PetClinic	Monolith	UC1	97.42 J	157.17 J	
		UC2	150.55 J		
		UC3	223.55 J		
TicketMonster	Microservices	UC1	108.71 J	173.18 J	- 160.36 J
		UC2	142.60 J		
		UC3	268.24 J		
PetClinic	Microservices	UC1	97.07 J	147.54 J	
		UC2	142.01 J		
		UC3	203.55 J		

Table 6: Energy Comparison: Monolith vs Microservices Architectures

Application	Architecture	Use Case	Use Case	Overall	Mono. and
		ID	Avg.	Avg.	Micro. Avg.
$\operatorname{TicketMonster}$	${ m Monolith}$	UC1	108.82 J	183.14 J	170.15 J
		UC2	151.52 J		
		UC3	289.08 J		
PetClinic	Monolith	UC1	97.42 J	157.17 J	
		UC2	150.55 J		
		UC3	223.55 J		
$\operatorname{TicketMonster}$	Microservices	UC1	108.71 J	173.18 J	160.36 J
		UC2	142.60 J		
		UC3	268.24 J		
PetClinic	Microservices	UC1	97.07 J	147.54 J	
		UC2	142.01 J		
		UC3	203.55 J		

Table 6: Energy Comparison: Monolith vs Microservices Architectures

Application	Architecture	Use Case	Use Case	Overall	Mono. and
		\mathbf{ID}	Avg.	Avg.	Micro. Avg.
TicketMonster	Monolith	UC1	108.82 J	183.14 J	170.15 J
		UC2	151.52 J		
		UC3	289.08 J		
PetClinic	Monolith	UC1	97.42 J	157.17 J	
		UC2	150.55 J		
		UC3	223.55 J		
TicketMonster	Microservices	UC1	108.71 J	173.18 J	160.36 J
		UC2	142.60 J		
		UC3	268.24 J		
PetClinic	Microservices	UC1	97.07 J	147.54 J	
		UC2	142.01 J		
		UC3	203.55 J		

Table 6: Energy Comparison: Monolith vs Microservices Architectures

Application	Architecture	Use Case	Use Case	Overall	Mono. and
		ID	Avg.	Avg.	Micro. Avg.
TicketMonster	Monolith	UC1	108.82 J	183.14 J	170.15 J
		UC2	151.52 J		
		UC3	289.08 J		
PetClinic	Monolith	UC1	97.42 J	157.17 J	
		UC2	150.55 J		
		UC3	223.55 J		
TicketMonster	Microservices	UC1	108.71 J	173.18 J	160.36 J
		UC2	142.60 J		
		UC3	268.24 J		
PetClinic	Microservices	UC1	97.07 J	147.54 J	
		UC2	142.01 J		
		UC3	203.55 J		

Discussion

- Microservices may consume less energy compared to monoliths (in these case studies)
- Energy savings increase when workloads are heavier.
- Variability in energy measurements is a real issue (background processes, garbage collection).

Threats to Validity & Future Work

- Internal Validity: Limited to 2 apps, Java Only.
 - > Replicating across more case studies
- External Validity: Controlled setup.
 - More realistic testing environment (scaling, latency, replication)
- Conclusion Validity: Results are statistically significant but constrained by sample size.
 - Increase runs & diversify workloads

Thank you!

Dr. Roberta Capuano, Eoan O'Dea, Prof. Henry Muccini eoan.odea@graduate.univaq.it

References

- [1] Charlotte Freitag, Mike Berners-Lee, Kelly Widdicks, Bran Knowles, Gordon S Blair, and Adrian Friday. 2021. The real climate and transformative impact of ICT: A critique of estimates, trends, and regulations. Patterns 2, 9 (2021).
- [2] European Commission. Il Corporate Sustainability Reporting. Il European Commission, 2025, finance.ec.europa.eu/capital-markets-union-and-financial-markets/company-reporting-and-auditing/company-reporting/corporate-sustainability-reporting Ilen.
- [3] Research, S. Microservices Architecture Market Competitive Landscape [2032]. (Straitsresearch.com,2024), https://straitsresearch.com/report/microservices-architecture-market
- [4] F. Ponce, G. Mørquez, and H. Astudillo, "Migrating from monolithic architecture to microservices: A Rapid Review," in 2019 38th International Conference of the Chilean Computer Science Society (SCCC), Concepcion, Chile, 2019, pp. 1-7, doi: 10.1109/SCCC49216.2019.8966423.
- [5] Taibi, D., Lenarduzzi, V., and Pahl, C. (2017). Processes, motivations, and issues for migrating to microservices architectures: An empirical investigation. IEEE Cloud Computing, 4(5), 22-32.
- [6] Su, R., Li, X., and Taibi, D. (2023). Back to the Future: From Microservice to Monolith. arXiv preprint arXiv:2308.15281.
- [7] Su, R., Li, X., and Taibi, D. (2024). From Microservice to Monolith: A Multivocal Literature Review. Electronics, 13(8), 1452.
- [8] Gartner, Inc. Microservices Architecture: Have Engineering Organizations Found Success?, Gartner Peer Community, 2023. Available: https://tinyurl.com/bdetfjwz